
Notes – version 2.8 Chapter 15 – Inserting Data

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 1 of 20

Notes to accompany SQL course exercises…

With reference to: - Sams teach yourself SQL in 10 Minutes - Fourth Edition

Table of Contents
Notes to accompany SQL course exercises… ... 1

Loading Sample Files ... 2

Chapter 15 – Inserting Data.. 3

Chapter 16 – Updating & Deleting Data ... 4

Chapter 17 – Creating & Manipulating Tables .. 5

Chapter 18 – Using Views ... 7

Chapter 19 – Stored Procedures .. 8

Chapter 20 – Managing Transactions ... 10

Chapter 21 – Using Cursors .. 11

Example of a Cursor Statement.. 13

Chapter 22 - Constraints... 14

Understanding Indexes .. 15

Using Triggers ... 17

Exercise: Using Cursors and Stored Procedures.. 20

Notes – version 2.8 Chapter 15 – Inserting Data

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 2 of 20

Loading Sample Files
Sample files are available from the Web page:

 http://forta.com/books/0672336073/ (as referenced Forth Edition 2015 – Appendix A).

Once the SQL Management Studio has been installed, a new database must be created e.g.

SQL_Course

For this course, the files are scripted into the created database (SQL_Course) i.e. CREATE TABLE (s)

and INSERT INTO. (These are more full covered in Chapters 17 for CREATE TABLE and Chapter 15

INSERT INTO).

The cursor must select the newly created database (SQL_Course) in the Object Explorer before any

file Importing to ensure the files will end up in the Exercise Database SQL_Course), NOT the Master.

The alternative to scripting the files in is to Import (using Tasks/Import Data) the files from another

database.

Point to the Microsoft .mdb file and follow the prompts.

If the data is imported from the .mdb database, no relationships will be inherited. If needed, then

they will have to be added ‘after the fact’ with reference to Chapter 22 – Understanding

Constraints.

NB

There is a sample backup database in the Backup directory of this CD for continued exercises

regarding Cursors and Stored Procedures… refer to Chapter ‘Exercise: Using Cursors and Stored

Procedures ‘.

http://forta.com/books/0672336073/

Notes – version 2.8 Chapter 15 – Inserting Data

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 3 of 20

Chapter 15 – Inserting Data

Page 146 - INSERT INTO

 Contains two statements

1. INSERT INTO

2. VALUES

N.B. There are no Column references in the Customers table (poor practice).

Page 147- INSERT_INTO by Column Reference

 The INSERTED columns are explicitly stated after the table name – NO AMBIGUITY – Best

Practice

Page 148 – Re-Ordering Column references

 The Columns have been explicitly defined for the INSERT; VALUES must match the Column

Order.

Page 149 – Partial Rows

 Suggested that only the cust_id, cust_name be INSERTED; all other Columns allow NULL

 Page 150 – Inserting Retrieved Data

 This exercise requires that a NEW TABLE be CREATED and POPULATED (INSERT INTO) with data

in preparation for the Insertion of retrieved data.

 NB Lesson 17 must now be addressed to CREATE TABLE in preparation for INSERT INTO Retrieved

Data

Page 163 – CREATE TABLE

 CREATE TABLE CustNew

 (

cust_id CHAR(10) NOT NULL PRIMARY KEY,

 cust_name CHAR(50) NOT NULL,

cust_address CHAR(50),

cust _city CHAR(50)

)

 Continuing from CREATE CustNew table

Notes – version 2.8 Chapter 16 – Updating & Deleting Data

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 4 of 20

 INSERT INTO to populate the table as the final step for Inserting Retrieved Data

 Two rows have been INSERTED into the CustNew table in preparation for the exercise on

Page 150

Page 150 - INSERT_INTO_SELECT

 INSERT the rows from another table into this table – this APPENDS rows to an existing table

 This IMPORTS data into another table i.e. APPEND

Page 152 - SELECT_INTO_FROM (Make a Copy of the Table).

CREATES a new table on the fly and appends all (or nominated rows into the new table using

WHERE)

 This EXPORTS data into a newly created table i.e. MAKE TABLE

Chapter 16 – Updating & Deleting Data

Page 156 - 16_UPDATE

 UPDATE modifies row(s) in an existing table

 UPDATE the nominated table

 SET the Column and Value to be Updated – an Assignment (=)

 WHERE the Column to be Updated is referenced (usually the PK)

Page 156 - 16_UPDATE_Multiple_Columns

Page 158 - 16_DELETE _All Rows

Deletes ALL rows from a table – NB No WHERE Clause

 DELETE

 FROM Table

Page 158 - 16_DELETE _WHERE

Deletes specified rows from a table conditional upon the WHERE Clause

 DELETE

 FROM Table

 WHERE Row(s) are specified

Notes – version 2.8 Chapter 17 – Creating & Manipulating

Tables

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 5 of 20

Chapter 17 – Creating & Manipulating Tables

Page 164 - 17 CREATE TABLE

 Create a new table by specifying the

1. Table Name

2. Data Type

3. Allow or Not allow NULLS

DATA TYPES:

Strings:

1. CHAR Fixed Length String 1 to 255 characters

2. VARCHAR National Character (Unicode) Fixed width

3. NVARCHAR National Character (Unicode) Variable width

Numeric Types:

1. BIT Single Bit value – Boolean for Flags

2. DECIMAL (p, [s]) Fixed or Floating Point, varying levels of precision

p (precision) - The maximum total number of decimal digits that can be stored, both to the

left and to the right of the decimal point. The precision must be a value from 1 through the

maximum precision of 38. The default precision is 18.

s (scale) - The maximum number of decimal digits that can be stored to the right of the

decimal point. Scale must be a value from 0 through p. Scale can be specified only if

precision is specified. The default scale is 0; therefore, 0 <= s <= p. Maximum storage sizes

vary, based on the precision

e.g. DECIMAL (10,4) is 10 places to the right and left of the decimal point - Precision

the 4 is the number of decimals to the right of the decimal point - Scale

10 - 4 = 6. 6 is the number of places which can be stored to the left of the decimal point

3. FLOAT Floating Point values

4. INTEGER Integer value (+ and –) 2 billion

5. REAL 4-byte Floating Point values

6. SMALLINT (+ and -) 32,000

7. TINYINT 0 – 255 (Positive Only)

Notes – version 2.8 Chapter 17 – Creating & Manipulating

Tables

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 6 of 20

Date and Time:

1. DATE Date only value

2. TIME Time Only

3. DATETIME Date and Time values

Chapter 17 – Creating & Manipulating Tables (cont.)

Page 168 - 17 DEFAULT VALUES

 Default values can be assigned at table creation time

 E.g. Quantity INTEGER NOT NULL Default 1,

 (By using a Default Value instead of a NULL, Columns that may be required to calculate will

not fall over.)

UPDATING TABLES – ALTER TABLE

 Should be avoided... Best to have an accurate schema before database construction.

Page 170 - 17 ALTER TABLE

 ALTER TABLE Table name

 ADD new Column

 ALTER TABLE Table name

 DROP COLUMN Column name

 Page 172 - 17 DROP TABLE

Table name – (NO warning will be given, nor is there any UNDO!)

Notes – version 2.8 Chapter 18 – Using Views

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 7 of 20

Chapter 18 – Using Views

Views are virtual tables...they are queries that dynamically retrieve data when used ...they contain

NO data themselves. The data is returned dynamically from all table(s) in the View.

Views are used to simplify and allow the reuse of SQL statements

Page 179 - CREATE VIEW

Both CREATE VIEW and DROP VIEW have been used.

Two alternative SELECT Statements have been used demonstrating simple table (equi) joins, as well

as INNER Joins.

Page 176 - Using the VIEW

The VIEW is used as a virtual table and the use of the WHERE Clause filters the customers that have

purchased a particular product

VIEWS can be used for reformatting data prior to selection, filtering unwanted data before

selection, or as a precursor to calculating fields.

Page 183 - CREATE VIEW

VIEWS with Calculated Fields e.g.

USE SQL_Course

CREATE VIEW v_AllCustomerDetails

AS

SELECT C.cust_id

, O.order_num

, C.cust_name

, C.cust_city

, OI.quantity

, OI.item_price

, OI.quantity * OI.item_price AS LineItem

, P.prod_id

, P.prod_name

, V.vend_name

, V.vend_address

FROM Customers AS C INNER JOIN Orders AS O

 ON C.cust_id = O.cust_id

 INNER JOIN OrderItems AS OI

 ON O.order_num = OI.order_num

 INNER JOIN Products as P

 ON OI.prod_id = P.prod_id

 INNER JOIN Vendors AS V

 ON P.vend_id = V.vend_id

Calculated fields can be processed within the VIEW to be utilised by other SELECT statements

Notes – version 2.8 Chapter 19 – Stored Procedures

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 8 of 20

Chapter 19 – Stored Procedures

The syntax for creating a STORED PROCEDURE is exactly that.

STORED PROCEDURE – AS

N.B. - CREATE PROCEDURE MUST be the FIRST/ONLY statement in this query batch

Page 194 - STORED PROCEDURE

Procedure has been modified to demonstrate

1. How a STORED PROCEDURE is CREATED.

2. How to DROP a STORED PROCEDURE.

3. How to DECLARE a variable.

4. How a STORED PROCEDURE uses the EXECUTE statement.

Code for a Stored Procedure to add a new Customer with an incremented cust_id

SELECT *

FROM CustNew

--DROP the NewCustomer Stored Procedure

--DROP PROCEDURE NewCustomer

--Create a new stored Procedure for inserting new customers with an incremented

cust_id

CREATE PROCEDURE NewCustomer @cust_name CHAR (20), @cust_address CHAR (50),

@cust_city CHAR (50)

AS

--Declare the variable for the new cust_id

DECLARE @Newcust_id INTEGER

--Get the current highest cust_id

SELECT @Newcust_id = MAX (cust_id)+ 1

FROM CustNew

--INSERT the New Customer

 INSERT INTO CustNew(cust_id,cust_name, cust_address,cust_city)

 VALUES (@Newcust_id,@cust_name, @cust_address, @cust_city)

--Return the NewCustomer

 RETURN @NewCust_id

--Execute the Stored Procedure

EXECUTE NewCustomer 'Fish Shop', '11 Bean Street', 'Glebe'

Notes – version 2.8 Chapter 19 – Stored Procedures

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 9 of 20

Chapter 19 – Stored Procedures (Cont.)

User Defined Stored Procedure – for mathematical calculations.

DECIMAL (10, 4) is 10 places to the right and left of the decimal point…

the 4 is the number of decimals returned to the right of the decimal point.

Calculate the number of integer places:

10 - 4 = 6 6 is the number of places which can be stored to the left of the decimal point.

6 integer positions to the left of the decimal and 4 decimals add to 10.

CREATE PROCEDURE CalcVars @VarOne DECIMAL(10, 6), @VarTwo DECIMAL(10, 6)

AS

DECLARE @VarResult DECIMAL(10, 6)

SELECT @Varresult = @varOne * @varTwo

PRINT @VarResult

RETURN @VarResult

EXEC dbo.CalcVars 122.85 ,81.4 -- returns four (4) decimal places – the maximum allowable

EXEC dbo.CalcVars 122.85 ,81.5 -- cannot return more than four (4) decimal places - ERROR

Notes – version 2.8 Chapter 20 – Managing Transactions

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 10 of 20

Chapter 20 – Managing Transactions

To ensure that batches of SQL statements are executed in entirety with integrity, a transaction

management regime is employed.

BEGIN TRANSACTION - the commencement of the transaction process

SAVE TRANSACTION - establish point in the database ‘record set’ where the process can

return to the Savepoint

COMMIT TRANSACTION - all SQL statements between BEGIN and COMMIT will be executed if

successful, OR NOT AT ALL if unsuccessful

ROLLBACK TRANSACTION - return to the Savepoint in the case that all SQL statements have not

been executed

 completely

Page 203 - Using Savepoints

SAVE TRANSACTION {Unique Identifier}

ROLLBACK TRANSACTION {Unique Identifier}

If you commit the transaction, you can't then make a rollback. Do one or the other!

 NB Once you BEGIN a transaction, you MUST either ROLLBACK or COMMIT.

 The server will expect one of either of these two instructions, or will hang!

Notes – version 2.8 Chapter 21 – Using Cursors

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 11 of 20

Chapter 21 – Using Cursors

Cursors are the result dataset of a query. The dataset is ‘loaded’ into the Cursor for processing on a

record by record basis. Once the Cursor is stored, applications (SQL code) can scroll or browse up

and down through the data.

Page 207 - CREATE CURSOR

A Cursor is DECLARED.

DECLARED {CursorName} CURSOR

FOR

SELECT {Fields}

FROM {Table}

DECLARE statements - Declare variables used in the code block

SET\SELECT statements - Initialize the variables to a specific value

DECLARE CURSOR statement - Populate the cursor with values that will be evaluated

OPEN statement - Open the cursor to begin data processing

FETCH NEXT statements - Assign the specific values from the cursor to the variables

NOTE - This logic is used for the initial population before the WHILE

statement and then again during each loop in the process

as a portion of the WHILE statement

WHILE statement - Condition to begin and continue data processing

BEGIN...END statement - Start and end of the code block

NOTE - Based on the data processing multiple BEGIN...END

statements can be used could be just about any DML or

administrative logic

CLOSE statement - Releases the current data and associated locks, but

permits the cursor to be re-opened

DEALLOCATE statement - Destroys the cursor

Notes – version 2.8 Chapter 21 – Using Cursors

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 12 of 20

Page 210 - USING CURSOR(s)

Once DECLARED, Cursors can be OPENED.

Variables are DECLARED to hold the contents of the Cursor.

Code executed against it.

Once the execution of the code has been completed, the Cursor must be CLOSED (each

time).

Once a Cursor is CLOSED, it cannot be reused again.

It does not have to be ‘RE-DECLARED’ to be OPENED again, just OPEN it.

Once the Cursor is completely finished with, it is DEALLOCATED to return resources back to

the application.

Once DEALOCATED, the Cursor must be DECLARED again before it can be OPENED.

Please note that cursors are the SLOWEST way to access data inside SQL Server. They should

only be used when you truly need to access a row or object (e.g. a Database) one at a

time.

N.B.

There are additional sample files for Cursors in the Section of this Document - Exercise: Using Cursors

and Stored Procedures.

Notes – version 2.8 Chapter 21 – Using Cursors

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 13 of 20

Chapter 21 – Using Cursors (cont.)

Example of a Cursor Statement

 Copied from mssqltips.com

This will backup all databases for this instance of SQL Server…

DECLARE @name VARCHAR (50) -- database name

DECLARE @path VARCHAR (256) -- path for backup files

DECLARE @fileName VARCHAR (256) -- filename for backup

DECLARE @fileDate VARCHAR (20) -- used for file name

 -- specify database backup directory

SET @path = 'C:\Backup\'

 -- specify filename format

SELECT @fileDate = CONVERT(VARCHAR (20), GETDATE(),112) -- returns in the

format 20160725

DECLARE db_cursor CURSOR FOR

SELECT name

FROM master.dbo.sysdatabases

WHERE name NOT IN ('master','model','msdb','tempdb') -- exclude these

databases

OPEN db_cursor

FETCH NEXT FROM db_cursor INTO @name

 WHILE @@FETCH_STATUS = 0 -- continue until there are no more databases

to backup

 BEGIN

 SET @fileName = @path + @name + '_' + @fileDate + '.BAK'

 BACKUP DATABASE @name TO DISK = @fileName

 FETCH NEXT FROM db_cursor INTO @name

 END

CLOSE db_cursor

DEALLOCATE db_cursor

Notes – version 2.8 Chapter 22 - Constraints

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 14 of 20

Chapter 22 - Constraints

PRIMARY KEY – A unique identifier for a table; allows the ability to form a relationship with a

linked table via a Foreign Key. One Primary Key in the parent table and many of those keys

in the linking table. Once associated, Referential Integrity can be enforced to ensure that a

row is present in the Primary Key table before any subsequent records (rows) can be added

as a Child Record in the linking table.

 ADD Primary Key

 -- ADD a Primary Key to a table not keyed

 ALTER TABLE CustNew

 ADD PRIMARY KEY (cust_id)

For demonstration purposes, return the name of the Column containing the PK

 SELECT Primary Key

 --Select the name of the Primary Key field

 SELECT name

 FROM sys.key_constraints

 WHERE type = 'PK' AND OBJECT_NAME(parent_object_id) = N'CustNew';

 GO

 ADD Foreign Key

--ALTER the table of the Foreign Key

ALTER TABLE Orders

ADD Constraint

--Describe the Relationship between the PK & FK

 FOREIGN KEY (cust_id) REFERENCES Customers (cust_id)

 Check Constraints – CREATING TABLE

--Define the Column requiring the CHECK at Table creation

CREATE TABLE OrderItems

Quantity INTEGER NOT NULL CHECK (quantity > 0)

 Check Constraints – ALTERING TABLE

--ADD CONSTRAINT to the Column after Table built

ADD CONSTRAINT CHECK (quantity > 0)

Notes – version 2.8 Understanding Indexes

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 15 of 20

Understanding Indexes

Indexes are used to sort data in a logical order.

A Primary Keyed Column is a Clustered Index.

There can be only one clustered index per table, because the data rows themselves can be sorted

in only one order.

The returned Row is quickly found by the unique sorted Column (usually the PK).

Notes – version 2.8 Understanding Indexes

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 16 of 20

Chapter 22 – Indexes (cont.)

The database also allows for Non Clustered Indexes.

Non Clustered Indexes are a separate Index file ordering the required Column

alphabetically and associating the location of each Row with the position (Pointer) to the

Table.

This table is ordered by the Item Column for faster

access.

 Index Table

id_PK Item Value Location

1 Mon 54 South

2 Tue 21 West

3 Wed 83 South

4 Thu 24 North

5 Fri 97 West

6 Sat 72 West

7 Sun 41 North

8 Mon 14 South

9 Tue 96 East

10 Wed 50 South

11 Thu 81 West

12 Fri 88 South

13 Sat 88 North

14 Sun 62 West

15 Mon 24 West

16 Tue 70 North

17 Wed 77 South

18 Thu 85 East

19 Fri 35 South

20 Sat 34 West

21 Sun 57 South

22 Mon 73 North

23 Tue 95 West

24 Wed 13 West

25 Thu 85 North

id_PK Pointer

5 Fri

12 Fri

19 Fri

1 Mon

8 Mon

15 Mon

22 Mon

6 Sat

13 Sat

20 Sat

7 Sun

14 Sun

21 Sun

4 Thu

11 Thu

18 Thu

25 Thu

2 Tue

9 Tue

16 Tue

23 Tue

3 Wed

10 Wed

17 Wed

24 Wed

This is the Clustered

Index column

Notes – version 2.8 Using Triggers

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 17 of 20

Using Triggers

Triggers are created to be fired (triggered) after any action query:

 INSERT

 UPDATE

 DELETE

Examples of the uses for triggers would be generating audit tables to record data movements as a

result of an action query i.e. writing logging tables.

The following example creates both a Employee_Test, and an Employee_Test_Audit tables for use in

both the INSERT and UPDATE triggers. No DELETE trigger has been provided, but the trigger

architecture is almost identical.

--CREATE TABLE Employee_Test

--(

--emp_ID INT Identity PRIMARY KEY,

--emp_Name Varchar(100),

--emp_Sal Decimal (10,2)

--)

--INSERT INTO Employee_Test VALUES ('Anees',1000);

--INSERT INTO Employee_Test VALUES ('Rick',1200);

--INSERT INTO Employee_Test VALUES ('John',1100);

--INSERT INTO Employee_Test VALUES ('Stephen',1300);

--INSERT INTO Employee_Test VALUES ('Maria',1400);

--SELECT *

--FROM Employee_Test

--CREATE TABLE Employee_Test_Audit

--(

--emp_AuditKey INT Identity PRIMARY KEY,

--emp_ID int,

--emp_name varchar(100),

--emp_Sal decimal (10,2),

--audit_Action varchar(100),

--audit_Timestamp datetime

--)

--SELECT *

--FROM Employee_Test_Audit

Notes – version 2.8 Using Triggers

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 18 of 20

Chapter 22 – Triggers (cont.)

This is an After INSERT Trigger

==

--CREATE TRIGGER trgAfterInsert ON [dbo].[Employee_Test]

--FOR INSERT

--AS

-- DECLARE @empid INT;

-- DECLARE @empname VARCHAR(100);

-- DECLARE @empsal DECIMAL(10,2);

-- DECLARE @audit_action VARCHAR(100);

-- SELECT @empid=i.Emp_ID FROM inserted AS i;

-- SELECT @empname=i.Emp_Name FROM inserted AS i;

-- SELECT @empsal=i.Emp_Sal from inserted AS i;

-- SET @audit_action='Inserted Record -- After Insert Trigger.';

-- INSERT INTO Employee_Test_Audit

-- (emp_ID, emp_Name, emp_Sal, audit_Action, audit_Timestamp)

-- VALUES (@empid, @empname, @empsal, @audit_action, GetDate());

-- PRINT 'AFTER INSERT trigger fired.'

--GO

--INSERT INTO Employee_Test

--VALUES('Miles',2250);

--SELECT *

--FROM Employee_Test

--SELECT *

--FROM Employee_Test_Audit

===

Notes – version 2.8 Using Triggers

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 19 of 20

Chapter 22 – Triggers (cont)

This is an After UPDATE Trigger

--CREATE TRIGGER trgAfterUpdate ON [dbo].[Employee_Test]

--FOR UPDATE

--AS

-- DECLARE @empid INT;

-- DECLARE @empname VARCHAR(100);

-- DECLARE @empsal DECIMAL(10,2);

-- DECLARE @audit_action VARCHAR(100);

-- SELECT @empid=i.Emp_ID FROM inserted AS i;

-- SELECT @empname=i.Emp_Name FROM inserted AS i;

-- SELECT @empsal=i.Emp_Sal FROM inserted AS i;

-- IF UPDATE(Emp_Name)

-- SET @audit_action='Updated Employee Name -- After Update

Trigger.';

-- IF UPDATE(Emp_Sal)

-- SET @audit_action='Updated Employee Salary -- After Update

Trigger.';

-- INSERT INTO Employee_Test_Audit(Emp_ID, Emp_Name, Emp_Sal,

Audit_Action, Audit_Timestamp)

-- VALUES(@empid, @empname, @empsal, @audit_action, GETDATE());

-- PRINT 'AFTER UPDATE Trigger fired.'

--GO

-- UPDATE Employee_Test

-- SET Emp_Sal=1550

-- WHERE Emp_ID=5

Notes – version 2.8 Exercise: Using Cursors and Stored

Procedures

Dynamic Web Training – Copyright 2015 © With reference to Sams Teach Yourself SQL – Fourth Edition Page 20 of 20

Exercise: Using Cursors and Stored Procedures

There is a sp_Exercise file in the Backup directory.

This is a complete database containing a number of Stored Procedures and examples of Cursors

using those Stored Procedures.

The Backup file can be Restored to the SQL Server by following the steps below:

1. Ensure you have SQL Management studio open

2. Highlight the Databases folder

3. Right mouse click and select Restore Database

4. In the General page

a. Source – Select Device

b. Click on the ellipsis …

c. Select Backup Device

d. Add path to the sp_Exercise file in the Backup Directory

e. Locate Backup File and Select All Files (*) from the File name

f. Select sp_Exercise

g. OK, then OK

h. In the Destination, select the Database

i. Add a new database name e.g. WorkingWithCursors

j. Hit OK

5. A new database has been Restored to the SQL Server

Scripted exercise references are prefixed with Alpha characters e.g. AAA; BBB in the Project folder.

