
Dynamic Web Training Advance WordPress Course 1

Intro to PHP 101

PHP LESSON: http://devzone.zend.com/4/php-101-part-1-down-the-rabbit-hole/

(ALL PHP LESSONS: http://devzone.zend.com/6/php-101--php-for-the-absolute-beginner/)

The Only Acronym You’ll Ever Need

If you’re new to Web development, you could be forgiven for thinking that it
consists of no more than a mass of acronyms, each one more indecipherable
than the last. ASP, CGI, SOAP, XML, HTTP – the list seems never-ending,
and the sheer volume of information on each of these can discourage the
most avid programmer. But before you put on your running shoes and flee,
there’s a little secret you should know. To put together a cutting-edge Web
site, chock full of all the latest bells and whistles, there’s only one acronym
you really need to know:

PHP

Now, while you have almost certainly heard of PHP, you may not be aware of
just how powerful the language is, and how much it can do for you. Today,
PHP has the enviable position of being the only open-source server-side
scripting language that’s both fun and easy to learn. This is not just
advertising: recent surveys show that more than 16,000,000 Web sites use
PHP as a server side scripting language, and the language also tops the list
of most popular Apache modules.

Why, you ask? The short answer: it’s powerful, it’s easy to use, and it’s free.
Extremely robust and scalable, PHP can be used for the most demanding of
applications, and delivers excellent performance even at high loads. Built-in
database support means that you can begin creating data-driven applications
immediately, XML support makes it suitable for the new generation of XML-
enabled applications, and the extensible architecture makes it easy for
developers to use it as a framework to build their own custom modules. Toss
in a great manual, a knowledgeable developer community and a really low
price (can you spell f-r-e-e?) and you’ve got the makings of a winner!

My goal in this series of tutorials is very simple: I’ll be teaching you the basics
of using PHP, and showing you why I think it’s the best possible tool for Web
application development today. I’ll be making no assumptions about your level
of knowledge, other than that you can understand basic HTML and have a
sense of humor. And before you ask… Yes, this series covers both PHP 4
and PHP 5, with new PHP 5 features flagged for easy reference.

http://devzone.zend.com/4/php-101-part-1-down-the-rabbit-hole/
http://devzone.zend.com/6/php-101--php-for-the-absolute-beginner/

Dynamic Web Training Advance WordPress Course 2

Let’s get going!

The Right Environment

PHP is typically used in combination with a Web server like Apache. Requests
for PHP scripts are received by the Web server, and are handled by the PHP
interpreter. The results obtained after execution are returned to the Web
server, which takes care of transmitting them to the client browser. Within the
PHP script itself, the sky’s the limit – your script can perform calculations,
process user input, interact with a database, read and write files… Basically,
anything you can do with a regular programming language, you can do inside
your PHP scripts.

From the above, it is clear that in order to begin using PHP, you need to have
a proper development environment set up.

This series will focus on using PHP with the Apache Web server on Linux, but
you can just as easily use PHP with Apache on Windows, UNIX and Mac OS.
Detailed instructions on how to set up this development environment on each
platform are available in the online manual, at
http://www.php.net/manual/en/installation.php – or you can just download a
copy of PHP 5 from http://www.php.net and read the installation instructions.

Go do that now, and come back when you’ve successfully installed and tested
PHP.

Start Me Up

There’s one essential concept that you need to get your mind around before
we proceed further. Unlike CGI scripts, which require you to write code to
output HTML, PHP lets you embed PHP code in regular HTML pages, and
execute the embedded PHP code when the page is requested.

These embedded PHP commands are enclosed within special start and end
tags, like this:

<?php

... PHP code ...

?>

Here’s a simple example that demonstrates how PHP and HTML can be 
combined:

<html>

<head></head>

http://www.php.net/manual/en/installation.php
http://www.php.net/

Dynamic Web Training Advance WordPress Course 3

<body>

Agent: So who do you think you are, anyhow?

<?php

// print output

echo 'Neo: I am Neo, but my people call me The One.';

?>

</body>

</html>

Not quite your traditional “Hello, World” program… but then again, I always
thought tradition was over-rated.

Save the above script to a location under your Web server document root,
with a .php extension, and browse to it. You’ll see something like this:

Dynamic Web Training Advance WordPress Course 4

Look at the HTML source:

<html>

<head></head>

<body>

Agent: So who do you think you are, anyhow?

Neo: I am Neo, but my people call me The One.

</body>

</html>

What just happened? When you requested the script above, Apache
intercepted
your request and handed it off to PHP. PHP then parsed the script,
executing the code between the <?php...?> marks and
replacing it with the output of the code run. The result was then handed
back to the server and transmitted to the client. Since the output contained
valid HTML, the browser was able to render it for display to the user.

A close look at the script will reveal the basic syntactical rules of PHP.
Every PHP statement ends in a semi-colon. This convention is identical to
that used in Perl, and omitting the semi-colon is one of the most common
mistakes newbies make. That said, it is interesting to note that a semi-colon
is not needed to terminate the last line of a PHP block. The
PHP closing tag includes a semi-colon, therefore the following is perfectly
valid PHP code:

<?php

// print output

echo 'Neo: I am Neo, but my people call me The One.'

?>

It’s also possible to add comments to your PHP code, as I’ve done in the
example above. PHP supports both single-line and multi-line comment blocks:

<?php

// this is a single-line comment

/* and this is a

Dynamic Web Training Advance WordPress Course 5

multi-line

comment */

?>

Blank lines within the PHP tags are ignored by the parser. Everything outside
the tags is also ignored by the parser, and returned as-is. Only the code
between the tags is read and executed.

A Case of Identity

Variables are the bread and butter of every programming language… and
PHP has them too. A variable can be thought of as a programming construct
used to store both numeric and non-numeric data; the contents of a variable
can be altered during program execution. Finally, variables can be compared
with each other, and you – the programmer – can write code that performs 
specific actions on the basis of this comparison.

PHP supports a number of different variable types: integers, floating point
numbers, strings and arrays. In many languages, it’s essential to specify the
variable type before using it: for example, a variable may need to be specified
as type integer or type array. Give PHP credit for a little intelligence,
though: it automagically determines variable type by the context in which it is
being used!

Every variable has a name. In PHP, a variable name is preceded by a dollar
($) symbol and must begin with a letter or underscore, optionally followed by
more letters, numbers and/or underscores. For example, $popeye, $one and
$INCOME are all valid PHP variable names, while $123 and $48hrs are
invalid.

Note that variable names in PHP are case sensitive, so $me is different from
$Me or $ME.

Here’s a simple example that demonstrates PHP’s variables:

<html>

<head></head>

<body>

Agent: So who do you think you are, anyhow?

Dynamic Web Training Advance WordPress Course 6

<?php

// define variables

$name = 'Neo';

$rank = 'Anomaly';

$serialNumber = 1;

// print output

echo "Neo: I am $name, the $rank. You can call me by my
serial number, $serialNumber.";

?>

</body>

</html>

Here, the variables $name, $rank and  $serialNumber are first defined
with string and numeric values, and then substituted in the echo() function
call. The echo() function, along with the print() function, is commonly
used to print data to the standard output device (here, the browser). Notice
that I’ve included HTML tags within the call to echo(), and those have been
rendered by the browser in its output. You can do this too.

An Equal Music

To assign a value to a variable, you use the assignment operator: the =
symbol. This is used to assign a value (the right side of the equation) to a
variable (the left side). The value being assigned need not always be fixed; it
could also be another variable, an expression, or even an expression
involving other variables, as below:

<?php

$age = $dob + 15;

?>

Interestingly, you can also perform more than one assignment at a time.
Consider the following example, which assigns three variables the same
value simultaneously:

<?php

$angle1 = $angle2 = $angle3 = 60;

Dynamic Web Training Advance WordPress Course 7

?>

Not My Type

Every language has different types of variable – and PHP is no exception.
The language supports a wide variety of data types, including simple
numeric, character, string and Boolean types, and more complex arrays and
objects. Here’s a quick list of the basic ones, with examples:

Boolean: The simplest variable type in PHP, a Boolean variable, simply
specifies a true or false value.

<?php

$auth = true;

?>

Integer: An integer is a plain-vanilla whole number like 75, -95, 2000 or 1.

<?php

$age = 99;

?>

Floating-point: A floating-point number is typically a fractional number such
as 12.5 or 3.141592653589. Floating point numbers may be specified using
either decimal or scientific notation.

<?php

$temperature = 56.89;

?>

String: A string is a sequence of characters, like “hello” or “abracadabra”.
String values may be enclosed in either double quotes (“”) or single quotes(”).
(Quotation marks within the string itself can be “escaped” with a backslash (\)
character.) String values enclosed in double quotes are automatically parsed
for special characters and variable names; if these are found, they are
replaced with the appropriate value.
Here’s an example:

<?php

$identity = 'James Bond';

$car = 'BMW';

// this would contain the string "James Bond drives a BMW"

Dynamic Web Training Advance WordPress Course 8

$sentence = "$identity drives a $car";

echo $sentence;

?>

Market Value

If variables are the building blocks of a programming language, operators are
the glue that let you build something useful with them. You’ve already seen
one example of an operator – the assignment operator -, which lets you
assign a value to a variable. Since PHP believes in spoiling you, it also
comes with operators for arithmetic, string, comparison and logical
operations.

A good way to get familiar with operators is to use them to perform arithmetic
operations on variables, as in the following example:

<html>

<head>

</head>

<body>

<?php

// set quantity

$quantity = 1000;

// set original and current unit price

$origPrice = 100;

$currPrice = 25;

// calculate difference in price

$diffPrice = $currPrice - $origPrice;

// calculate percentage change in price

$diffPricePercent = (($currPrice - $origPrice) * 100)/$origPrice

?>

<table border="1" cellpadding="5" cellspacing="0">

Dynamic Web Training Advance WordPress Course 9

<tr>

<td>Quantity</td>

<td>Cost price</td>

<td>Current price</td>

<td>Absolute change in price</td>

<td>Percent change in price</td>

</tr>

<tr>

<td><?php echo $quantity ?></td>

<td><?php echo $origPrice ?></td>

<td><?php echo $currPrice ?></td>

<td><?php echo $diffPrice ?></td>

<td><?php echo $diffPricePercent ?>%</td>

</tr>

</table>

</body>

</html>

Looks complex? Don’t be afraid – it’s actually pretty simple. The meat of the
script is at the top, where I’ve set up variables for the unit cost and the
quantity. Next, I’ve performed a bunch of calculations using PHP’s various
mathematical operators, and stored the results of those calculations in
different variables. The rest of the script is related to the display of the
resulting calculations in a neat table.

If you’d like, you can even perform an arithmetic operation simultaneously
with an assignment, by using the two operators together. The two code
snippets below are equivalent:

<?php

// this...

$a = 5;

$a = $a + 10;

// ... is the same as this

Dynamic Web Training Advance WordPress Course 10

$a = 5;

$a += 10;

?>

If you don’t believe me, try echoing them both.

Stringing Things Along

Why stop with numbers? PHP also allows you to add strings with the string 
concatenation operator, represented by a period (.). Take a look:

<?php

// set up some string variables

$a = 'the';

$b = 'games';

$c = 'begin';

$d = 'now';

// combine them using the concatenation operator

// this returns 'the games begin now
'

$statement = $a.' '.$b.' '.$c.' '.$d.'
';

print $statement;

// and this returns 'begin the games now!'

$command = $c.' '.$a.' '.$b.' '.$d.'!';

print $command;

?>

As before, you can concatenate and assign simultaneously, as below:

<?php

// define string

$str = 'the';

// add and assign

$str .= 'n';

Dynamic Web Training Advance WordPress Course 11

// str now contains "then"

echo $str;

?>

To learn more about PHP’s arithmetic and string operators, visit 
http://www.php.net/manual/en/language.operators.arithmetic.php and
http://www.php.net/manual/en/language.operators.string.php.

That’s about it for this tutorial. You now know all about the basic building
blocks and glue of PHP – its variables and operators. In Part Two of this
series, I’ll be using these fundamental concepts to demonstrate PHP’s
powerful form processing capabilities.

http://www.php.net/manual/en/language.operators.arithmetic.php
http://www.php.net/manual/en/language.operators.string.php
http://devzone.zend.com/5/

